Study: Aggressive Breast Cancers Store Large Amounts of Energy, Which Enables It to Spread

The finding suggests a potential target in the metabolism that could slow or prevent breast cancer metastasis.

10:28 AM

Author | Nicole Fawcett

Doctor looking at computer screen

 

Cancer cells – especially the more aggressive ones – seem to have an ability to change. It's how they evade treatment and spread throughout the body.

But how does a cancer cell get the energy it needs to do this?

"We wondered if a cancer cell that wants to change its function can redirect energy, not because it takes on new energy, but because it has a stored reservoir of potential energy," says Sofia D. Merajver, M.D., Ph.D., professor of internal medicine and epidemiology at the University of Michigan and a researcher at the University of Michigan Rogel Cancer Center.

Merajver's lab looked at levels of glycogen, which represents a stored collection of glucose molecules. Glucose converts to energy, which cancer uses to grow, spread and metastasize.

SEE ALSO: How Very Aggressive Cancer Cells Use Energy to Grow

The team measured glycogen levels in cell lines representing triple-negative breast cancer, inflammatory breast cancer, hormone receptor positive breast cancer and normal breast cells.

The study, published in PLOS ONE, found that aggressive cancers stored glycogen in very large amounts, depending on available oxygen. It's on the order of what's stored in the liver – an organ whose key function is storing glycogen.

"It was surprising just how much glycogen these cancer cells were storing," Merajver says. "This means the cancer has that whole amount of glycogen ready to break down into glucose molecules when the need arises."

Even more surprising, the researchers found that an enzyme controlling glycogen degradation in the brain played a key role in glycogen control in breast cancer. The enzyme PYG exists in several forms, including brain and liver. PYGB is primarily expressed in the brain.

Researchers knocked down PYGB in breast cancer cells and found the cells couldn't use these energy stores and became much less aggressive. They didn't see the same effect in the normal breast cells.

LISTEN UP: Add the new Michigan Medicine News Break to your Alexa-enabled device, or subscribe to our daily updates on iTunesGoogle Play and Stitcher.

"This is a completely new way to look at the plasticity of breast cancer cells," Merajver says. "We think that this ability to change, for breast cancer cells to rewire themselves depending on their environment, is why many patients become resistant to precision medicines. Our study shows one way the cancer cells do this is by creating a reservoir of building blocks or energy."

Researchers believe PYGB could be a potential target to treat or prevent breast cancer metastases. Further studies will explore this link in animal models. Researchers will also investigate whether glycogen phosphorylases inhibitors, which have been studied in diabetes and heart disease, might slow or stop cancer metastasis.

View the Spanish translation here. 

MORE FROM THE LAB: Subscribe to our weekly newsletter

Paper cited: "Breast cancers utilize hypoxic glycogen stores via PYGB, the brain isoform of glycogen phosphorylase, to promote metastatic phenotypes", PLOS ONE. DOI: 10.1371/journal.pone.0220973.


More Articles About: Lab Report Breast cancer Cancer: Cancer Types
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of healthcare news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories lymph nodes breast cancer under microscope
Health Lab
Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment
In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cancer.
older woman sitting in chair looking at window in white shirt
Health Lab
Patients with Metastatic Breast Cancer and High Mutational Burden Benefit from Pembrolizumab
Study findings support the recent FDA approval of the immunotherapy agent for patients whose cancers have high number of mutations.
Photo: Leisa Thompson
Health Lab
Women with Inflammatory Breast Cancer Are Living Longer, But the Gap Between White and Black Patients Persists
A U-M Rogel Cancer study provides an updated, more comprehensive look at trends for this rare, aggressive form of breast cancer over the last four decades.
Breast cancer cell
Health Lab
Approach to Personalizing Treatment of Triple-Negative Breast Cancer Shows Promise in Cell Lines
Researchers devise new approach to find drug-activity biomarkers in fight against triple-negative breast cancer.
Health Lab
By Cannibalizing Nearby Stromal Stem Cells, Some Breast Cancer Cells Gain Invasion Advantage
Cancer biologists and engineers collaborated on a device that could help predict the likelihood of breast cancer metastasis.
Health Lab
Genetic Testing Doesn't Cause Undue Worry for Breast Cancer Patients
Newer genetic tests introduce more ambiguity, but a new study finds patients are not overreacting to uncertain results.