Bringing Precision Medicine to Ophthalmology

Innovative device ensures doctors obtain adequate fluid samples from the eye, helping with diagnosis and individualized treatment plans for patients.

12:34 PM

Author | Jordyn Imhoff

doctor and patient talking in a room
File photo. Thomas Gardner, M.D., M.S. with a patient.

When a patient becomes sick, a clinician can use a needle to get a fluid sample from almost any organ in the body.

A molecular analysis of this fluid helps clinicians determine a diagnosis and create the most specific and effective treatment plan for the patient, a customized approach known as precision medicine.

Although the eyes contain a gel-like fluid that can be readily sampled with a needle, precision medicine for eyes diseases is lacking.

That's why Thomas Gardner, M.D., M.S., an ophthalmologist at the University of Michigan Kellogg Eye Center, and Jeffrey Sundstrom, M.D., Ph.D., an ophthalmologist at Penn State Health Milton S. Hershey Medical Center, are working together to make a safe device that can be used in the clinic room and ensures adequate fluid samples are obtained every time.

The eyes are one organ that don't have routine molecular diagnosis tests, and Gardner warns this can have grave consequences in diagnosing and treating potentially vision-threatening conditions for patients.

"Many clinicians are hesitant to put a needle in someone's eye without a strong indication that something is wrong, and that's normally when there's an infection," he says. "And for those that do get a diagnostic test done, it's often difficult to get an adequate sample."

This leaves ophthalmologists to make diagnoses and provide treatment plans based on their best, educated guesses, which Gardner says, is unacceptable.

Why this matters

Many eye diseases, like age-related macular degeneration, a degenerative eye disease that damages the retina, and diabetic retinopathy, the damage of nerve cells and blood vessels in the eyes that can lead to blindness, look similar when examined by an ophthalmologist.

"Inflammatory conditions in the eye look similar," Gardner says. "And although infection has specific features that make it identifiable, these features aren't unique to any particular infection."

Because treatments are non-specific for many inflammatory eye conditions, a patient might just get steroids as a treatment plan to try and reduce the inflammation.

Regular needles don't work all the time, and we need them to work all the time.
Thomas Gardner, M.D., M.S.

Eye care is today where cancer care used to be a few decades ago, according to Gardner. Many cancers used to be treated by chemotherapy or radiation that affected the whole body. Now, specific mutations in the body's tissue can be identified and classified so medication can be tailored to the mutation responsible for the cancer.

In this regard, precision medicine can be more effective and carry a lower possibility of negative consequences to the patient's overall health.

The 'Mini-Vit'

Currently, there isn't any standard process for collecting vitreous, or the eye's gel-like, fluid samples. Often, they're retrieved by a retina surgeon in the operating room from patients that need surgery, because it's easiest to get an adequate sample that way.

However, surgery can be expensive, and Gardner says the threshold for collecting a fluid sample for analysis shouldn't be getting a patient in the operating room.

One of the major problems is that the needle used to get a good sample doesn't always work because the fluid is gelatinous and clogs it.

MORE FROM THE LAB: Subscribe to our weekly newsletter

To make acquiring a sample easier, Gardner and Sunstrom have worked with Lauro Ojeda, M.S., a research scientist in the University of Michigan's engineering department, to develop a handheld, disposable device specifically designed for getting a substantial sample. The device, called the Mini-Vit, contains a needle inside a larger needle that can cut the gelatinous fluid – the culprit of an inadequate sample. 

"Regular needles don't work all the time, and we need them to work all the time," Gardner says.

The project started with funds from Fast Forward Medical Innovation's Kickstart Program and is now funded by the Coulter Translational Research Partnership Program and the Taubman Institute.

These funds will also be used to create a standard process for analyzing the fluid at the molecular level, referred to as "oculomics".

The team is also working with Alexei Nesvizhskii, Ph.D., a pathologist at Michigan Medicine and Christopher Gates, M.S., the managing director of Bioinformatics Core, to create a repository of patient samples and develop new computational tools clinicians can use to compare to a large database of samples. They collaborate on the data analysis with Venkatesha Basrur, Ph.D., Felipe da Veiga Leprevost, Ph.D., and Jingqun Ma, Ph.D. at the University of Michigan, as well as Sarah Weber, B.S. and Yuanjun Zhao, M.D., Ph.D. at Penn State.

This repository will help clinicians identify or create the most specific and effective treatment plan for a given patient, or group of patients.

"These processes of collecting, analyzing and comparing patient samples could significantly advance Kellogg Eye Center's approach to vision-threatening conditions, as well as provide more treatment options for patients that may have previously thought there weren't any," Gardner says.


More Articles About: Industry DX Basic Science and Laboratory Research Emerging Technologies Eye Care & Vision Health Care Delivery, Policy and Economics Health Care Quality Kellogg Eye Center Lab Tests medical devices Health Screenings All Research Topics
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of healthcare news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories Illustration of a microscope
Health Lab
Helpful enzymes vanish in many patients with antiphospholipid syndrome
Researchers recently revealed a new mechanism behind antiphospholipid syndrome that the investigators hope will eventually allow treatments to be targeted closer to the source of the problem.
marijuana leaf drawing blue lab note yellow badge upper left corner
Health Lab
Data shows medical marijuana use decreased in states where recreational use became legal 
Data on medical cannabis use found that enrollment in medical cannabis programs increased overall between 2016 and 2022, but enrollment in states where nonmedical use of cannabis became legal saw a decrease in enrollment
Florescent image of a human ovarian follicle
Health Lab
Spatial atlas of the human ovary with cell-level resolution will bolster reproductive research
New map of the ovary provides a deeper understanding of how oocytes interact with the surrounding cells during the normal maturation process, and how the function of the follicles may break down in aging or fertility related diseases.
A CT scan of healthy lungs
Health Lab
Study reveals potential to reverse lung fibrosis using the body’s own healing technique
A recent U-M study uncovers a pathway utilized during normal wound healing that has the potential to reverse idiopathic pulmonary fibrosis.
Illustration of prescription bottle with a refill notice
Health Lab
In drive to deprescribe, heartburn drug study teaches key lessons
An effort to reduce use of PPI heartburn drugs in veterans because of overuse, cost and potential risks succeeded, but provides lessons about deprescribing efforts.
Exterior photograph of an urgent care clinic
Health Lab
Thinking outside the doctor’s office: How older adults use urgent care & in-store clinics
In the past two years, 60% of people age 50 to 80 have visited an urgent care clinic, or a clinic based in a retail store, workplace or vehicle, according to new findings from the University of Michigan National Poll on Healthy Aging.